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Abstract. By using completely optimized basis functions
it is shown that the convergence of the Hartree—Fock
energy for the Hy, Li, and N, molecules is significantly
better described by exponential behavior than by inverse
power dependence. This is the case both with respect
to the number of basis functions of a given type and
with respect to the highest angular momentum function
included. The Hartree—Fock limit for Hj is estimated to
be —1.300372125 hartree.
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1 Introduction

Contemporary ab initio methods for calculating accu-
rate energetics and molecular properties have two major
limiting factors: incomplete incorporation of electron
correlation and incomplete description of the orbitals
due to the use of finite basis sets [1]. Recovering
substantial fractions of the correlation energy requires
sophisticated wave functions and large basis sets, and
obtaining microhartree accuracy for absolute energies is
prohibitively expensive for all but the smallest systems.
Recent research has focused on systematic hierarchies
of electron correlation methods and basis sets and on
extrapolation schemes for estimating the infinite basis,
infinite correlation result [2, 3].

Although there are procedures for approaching the
complete basis set limit by systematically enlarging a
basis set (e.g. even-tempered basis set [4]), these pre-
scriptions tend to be too slowly convergent to be of
practical use. More recently the correlation-consistent
polarized valence double (D)-, triple (T)-, quadruple (Q)-,
quintuple (5)- and sextuple (6)- { basis sets (cc-pVXZ,
X=D,T,Q,S5, 6)developed by Dunning and coworkers
[5] have been employed extensively as hierarchial basis
sets for systematically reducing the basis set truncation
error. The cc-pVXZ basis sets have been developed for
calculating the valence correlation energy in a systematic
fashion. On the basis of a suitable number of s and
p functions, the number and types of higher angular

momentum functions, as well as their exponents, are
selected from correlated calculations on atoms.

Both the Hartree—Fock (HF) and the correlation
energies depend on the size of the basis set. The com-
putationally difficult part is the correlation energy, al-
though it only accounts for around 1% of the total
energy. Theoretical analysis [6] indicates that for a basis
set saturated up to angular momentum L (L =01is an s
function, L =1 a p function, L =2 a d function, etc.)
the correlation energy converges as an inverse power
series, with the leading term being L7°, ie.
AL +BL ™ 4+ CL™> +---. The HF energy converges
significantly faster, but little is known about the actual
convergence behavior.

For the cc-pVXZ basis sets, L™ behavior for the
correlation energy has been observed computationally
[7], although other inverse power extrapolations have
also been used [8—10]. The energy of the hydrogen atom
has been shown to converge exponentially with the
number of s functions [11, 12], and for molecular sys-
tems the HF energy calculated by the correlation-
consistent basis sets can normally be fitted well by an
exponential function of the type E,, + de 5% [13-15],
although inverse power extrapolations have also been
used [9, 10, 16]. Since the number and the types of higher
angular momentum functions in the cc-pVXZ basis set
have been chosen on the basis of atomic correlation
energies, it is not obvious that they are also optimal for
describing charge polarization for HF wave functions in
molecular systems. The observed exponential behavior
for the correlation-consistent basis sets therefore does
not prove an inherent exponential convergence of the
HF energy.

We have recently shown by using fully optimized
basis functions that the HF energy for H, converges
exponentially, both with respect to the number of s
functions and with respect to the highest angular mo-
mentum functions included [17]. There are three main
limitations in this study:

1. The molecular orbital in H, extends over only two
nuclei.

2.H, has only two electrons and thus only one
molecular orbital.



3. The individual atoms in H, only have electrons in an
s-type orbital.

Presently we address these points by examining the
convergence behavior of the HF energy for Hj, Li, and
N,. In order to rigorously probe the convergence all
energies were converged to high accuracies, although
such accuracies have little chemical significance.

2 Basis set optimization

Analogous to the previous study [17], basis set exponents
were optimized by a pseudo-Newton—Raphson ap-
proach with In { as the variables and using gradients
generated by central finite differences [18]'. The target
accuracy for terminating an optimization was around
0.01 nanohartree for HY, around 0.1 nanohartree for Li,
and around 10 nanohartree for N,. The residual error
compared to the numerical HF value is around 12
nanohartree for Li, and is most likely due to errors from
the use of numerical gradients. The corresponding error
for HY is estimated to be around 1 nanohartree on the
basis of results for Li, and H; [17]. It was checked that
all results can be reproduced to the reported accuracy
using independent program packages [19, 20].

The primary interest is how the energy converges as a
function of maximum angular momentum functions in-
cluded in the basis set, but for H and Li, the conver-
gence behavior as a function of s functions only is also of
interest. As discussed later, the corresponding sp be-
havior for N, could not be investigated. The angular
momentum convergence can be established by deter-
mining the energy limit for using s functions only, using
s and p functions only (sp limit), using s, p and d func-
tions only (spd limit), etc. The L-limit energy was de-
termined by sequentially optimizing larger and larger
basis sets, until the energy became stable to within the
target accuracy. In some cases, as discussed later, opti-
mization resulted in variational collapse, i.e. two basis
exponents having the same L value converge toward the
same value, causing the overlap matrix to become sin-
gular. This indicates a lack of higher angular momentum
functions, and the problem disappears when higher
angular momentum functions are added.

All basis functions were centered on the nuclei, and
only the spherical components of the polarization
functions were used. For Li, the experimental distance
of 5.051 au was chosen [21], N, was taken to have a
bond length of 2.068 au, which is the value used in a
numerical calculation of the HF energy [22], while H7
was assumed to be a regular triangle with an internuclear
distance of 1.65 au.

'The numerical differentiation used a step size corresponding to
energy changes of around 0.1 nanohartree for Hf, around 1.0
nanohartree for Li, and around 10 nanohartree for N,
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3 Results and discussion
3.1 Results for HY

The energy convergence as a function of s functions for
H7 is shown in Table 1. With a basis set consisting of 15
functions on each center, an energy of —1.281035206
hartree is obtained, and addition of additional s
functions lowers the energy by less than 0.1 nanohartree.
The corresponding optimized exponents are shown as a
In { plot in Fig. 1. The pattern is slightly different from
H, [17], since the ratio between {; and {, of 7.0 ({; are
labeled according to increasing exponents, i.e. {; is
the most diffuse function) is significantly larger than
between (> and (5, 3.4. For H, the ratios between
successive exponents decrease monotonically as the
exponents become smaller, but this is not the case for
Hj. The M = 15 basis set has exponents in the range
7% 10°-3 x 1072, By comparing with the basis set
exponents for H, [17] it can be seen that there is a clear
trend for the optimal exponents for a given number of s
functions to be larger (tighter) for H than for H,,
except for the most diffuse exponent first appearing for
the M = 9 solution for H7. This is as expected since the
wave function for HJ is more compact than for H,.
The corresponding sp, spd, spdf, spdfg and spdfgh
limits are given in Table 2. The energy-lowering by ad-
dition of an i function to the 21s11p8d5f3glh basis is 0.1
nanohartree, i.e. at this point the energy is essentially
converged to the HF limit. On the basis of the observed
agreement between numerical and basis set energy limits
for H, and Li, (5 x 10™® and 8 x 107%%, respectively),
we estimate the HF limit for HY to be —1.300372125
hartree, with probable error bars of +0.4 nanohartree.
Two fully numerical studies of the HF energy of H7
have been published, producing energies of —1.30040
[23] and —1.30041 + 0.00004 hartree [24] for a trian-
gular geometry with R = 1.6405 au. Using this geometry
with our 21s11p8d5f3glh basis set gives an energy of
—1.300400141 hartree. Reoptimization of the exponents
of the 21s11p8d4f basis (spdf limit) at the R = 1.6405 au
geometry gave an energy lowering of 0.2 nanohartree,

Table 1. Hartree-Fock (HF) energy convergence for Hj as a
function of the number of s functions (M)

M Energy (hartree)
1 —-1.166879804
2 —-1.257028247
3 —1.275759647
4 —-1.280259159
5 —1.280910242
6 —-1.281011417
7 —1.281029568
8 —-1.281033199
9 —1.281034224

10 —1.281034982

11 —-1.281035153

12 —-1.281035193

13 —-1.281035203

14 —-1.281035205

15 —-1.281035206
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Table 2. HF energy convergence for Hj as a function of the In(M)
highest angular momentum basis functions (L) 08 04 00 04 08 12 16 20 24 28
oE T T T 1 T T T T T 1 T T T ']
L Basis Composition Energy (hartree) L el |
L =N B IN(E-Eee) V5. M
0 s limit (17s) —1.281035206 L B " '/:‘t(fm'f:l;’:‘/g:("gzwe 7]
1 sp limit (18s,8p) —-1.300177173 sl ‘oo ¢
2 spd limit (19s,10p,6d) —-1.300369780 |
3 spdf limit (21s,11p,8d.4f) —1.300372065 T .l
4 spdfg limit (21s,11p,8d,5f,3g) —-1.300372122 i |
5 spdfgh limit (21s,11p,8d,5f,3g,1h) —1.300372124 = 6l
oo Estimated HF limit —-1.300372125 i

i.e. the above value is essentially the HF limit, and it
agrees well with the numerical results. The HF limit for
H7 allows the correlation energy to be estimated as
—0.043463 hartree on the basis of explicitly correlated
Gaussian function calculations [25]. This is larger than
the value of —0.040846 hartree for H, [26], in agreement
with expectations.

The convergence behavior can be investigated by
plotting In(E, — E,) as a function of either x or In x,
where x denotes either the number of basis functions or
the highest angular momentum functions in the basis set
(x = M or L). An exponential convergence should give a
straight line as a function of x, while an inverse power
dependence should give a straight line as a function of
In x.

E;=Ey+Ade® o In(E, —Ey) =In A4 —Bx
E=E.+Ax? < In(E,~E,.)=In4—Blnx

Both types of plots are shown for the energy dependence
on the number of s functions in Fig. 2. The points are
better fitted by an exponential function (In 4 = 1.4,
B =1.41n Eq. 1, correlation coefficient = 0.997) than by

20
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Number of s functions = M

Fig. 2. Convergence of the Hartree-Fock energy for H7 as a
function of the number of s functions per atom

an inverse power form (In 4 = 1.6, B = 7.7, correlation
coefficient = 0.956). Also shown is the corresponding
convergence for the hydrogen atom, and it is clear that
the s convergence for Hi largely reflects the atomic
behavior.

Using the estimated HF limit in Eq. (1), the corre-
sponding plots as a function of highest angular mo-
mentum are shown in Fig. 3. For the L=4and L =75
points (spdfg and spdfgh limits), £; — E, is comparable
to the residual error of around 1 nanohartree, and these
points will deviate systematically from the expected be-
havior. This is partly artificial, as the around 1 nano-
hartree error presumably is evenly distributed, but
appears localized in the energies for the highest L limits.
The plots of In(E; — E) against L or In L for the first
four points (s, sp, spd and spdf limits) indicate that the
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behavior is better described by an exponential function
(In 4 =-4.1, B=4.21in Eq. 1, correlation coefficient =
0.9987) than by an inverse power form (In 4 = -3.4,
B =9.0, correlation coefficient = 0.988). Motivated by
the results for the hydrogen atom [12] we also investi-
gated an alternative exponential form depending on the
square root of (L + 1), as shown in Eq. (2). It provides
a statistical fit similar to Eq. (1) (In 4 = -12.7, B=9.1,
correlation coefficient = 0.9984), but reproduces the
L = 4 point better.

Ep = Es+Ae 2V o In(Ep — Ex) =In A4 —BVL+ 1
(2)

3.2 Results for Li,

The energy convergence as a function of s functions for
Li, is shown in Table 3. With a basis set consisting of 25
functions on each center an energy of —14.861396057
hartree is obtained. Addition of one additional tight
function lowers the energy by 0.2 nanohartree, and by
rounding we estimate the s limit for the energy to be
—14.861396058 hartree. The corresponding optimized
exponents are shown in Fig. 4. The exponents show a
clear pattern resembling the ls and 2s atomic orbitals.
As found for the H, and H;” systems, the valence
exponents become stable beyond M ~ 20, as additional
tight functions are added. The M =25 basis set has
exponents in the range 25 x 10°-8 x 1072

For Li, the problem of variational collapse is more
pronounced than for H, and Hf. The largest sp basis
which could be completely optimized was 25s8p. Al-
though extension of the p function space by adding
additional tight functions provided an energy-lowering
of around 30 nanohartree, subsequent full optimization
caused variational collapse of the p functions. Conse-
quently two additional tight p functions were added
to the 25s8p basis, and only these two exponents were
allowed to relax. The 25s10p basis gives an energy of
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Table 3. HF energy convergence for Li, as a function of M

M Energy (hartree)
2 —12.345957084
3 —-14.362093828
4 —-14.750570434
5 —-14.833274371
6 —14.852738204
7 —-14.857716890
8 —14.859411575
9 —14.860783827

10 —14.861193674

11 —-14.861323067

12 —-14.861366135

13 —-14.861381396

14 —-14.861387806

15 —-14.861392312

16 —-14.861394252

17 —-14.861395190

18 —-14.861395636

19 —-14.861395818

20 —-14.861395446

21 —-14.861396015

22 —-14.861396043

23 —-14.861396052

24 —-14.861396057

25 —-14.861396057

26 —-14.861396058

—14.871468854 hartree, which is taken as the sp limit.
Similar problems were encountered for the spd and
spdf limits, with the results indicated in Table 4. Once
g functions were included, the problem of varia-
tional collapse disappeared, and the spdfg and spdfgh
limits are obtained from fully optimized basis sets.
A 25s12p7d4f2glh basis provides an energy of
—14.871562846 hartree, and further extension of any
of the function spaces gives changes of less than 0.2
nanohartree. Addition of an i function causes an energy-
lowering of 0.2 nanohartree; thus the above energy is
effectively converged to the basis set limit.

The numerical HF value for Li, was reported as
—14.871563 hartree in Ref. [27] and has been refined with
larger grids to —14.871562858 hartree [28]°. This is
around 12 nanohartree below the present basis set limit,
with the discrepancy most likely due to errors associated
with the use of numerical gradients.

Plots for the s function convergence according to
Eq. (1) are shown in Fig. 5. The points are better fitted
by an exponential function (In 4 = 1.0 and B=0.9 in
Eq. (1), correlation coefficient = 0.994, neglecting the
M = 24 and 25 points) than by a power form (In 4 = 9.3
and B = 8.2, correlation coefficient =0.978). The s
convergence again mainly reflects the corresponding
atomic convergence.

The corresponding plots as a function of highest an-
gular momentum are shown in Fig. 6. For the L = 4 and
L =5 points (spdfg and spdfgh limits), E; — E,, is
comparable to the residual error of around 12 nano-
hartree, and these points will deviate systematically from

2The largest grid was 319 x 595 and used a cutoff distance of 65 au,
(J. Kobus, privat communication)
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the expected behavior. The plots of In(E; — E) against
L or In L for the first four points (s, sp, spd and spdf
limits) indicate that the behavior is slightly better de-
scribed by an exponential function (In 4 = -1.0 and
B =39 in Eq. (1), correlation coefficient = 0.997) than
by an inverse power form (In 4 =—-4.2 and B = 8.4,
correlation coefficient = 0.992). A somewhat better
fit In A = -11.9 and B = 7.4, correlation coefficient =
0.9997) can be obtained by an exponential function of
the type shown in Eq. (2).

3.3 Results for N,

For N, the problem of variational collapse is signifi-
cantly worse than for Li,. With only s and p functions,
the largest basis set which could be completely optimized
was 15s8p. The energy with this basis is —108.910828

Number of s functions = M

Fig. 5. Convergence of the Hartree-Fock energy for Li, as a
function of the number of s functions per atom

hartree, and the last s function added gave an energy-
lowering of —0.000048 hartree. A constrained optimiza-
tion of the 16s9p basis (addition of one s and p function
to the 15s8p basis) gave an energy of —108.910851
hartree, but further extensions caused variational
collapse. Our best estimate of the sp limit is thus
—108.910851 hartree, but it is clear that this is a
somewhat crude upper limit and a convergence plot
corresponding to Figs. 2 and 4 is therefore not justified.

Similar problems of variational collapse were en-
countered for the spd, spdf and spdfg limits, with the
results shown in Table 5. The spdfg limit is —108.993813
hartree, and addition of a single h function lowers the
energy to —108.993824, in good agreement with the nu-
merical HF value of —108.993826 hartree [22]. A fully
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Table 5. HF energy convergence for N, as a function of L

L Basis Composition Energy (hartree)
(15s,8p) -108.910828

1 sp limit (16s,9p)* —-108.910851
(20s,10p,5d) —108.990675

2 spd limit (20s,12p,7d)* —108.990691
(21s,12p,7d,3f) —108.993620

3 spdf limit (21s,12p,7d,4)* —-108.993623
(23s,13p,9d,4f,2g) —108.993812

4 spdfg limit (23s,13p,9d,5f,3g)* —-108.993813

oo HF limit® -108.993826

#Only the additional basis functions with respect to the previous
entry were optimized
b Ref. [22]

optimized spdfgh basis will presumably be able to re-
produce the HF limit, but this was not attempted owing
to the high computational cost. Plots corresponding
to Figs. 3 and 6 are shown in Fig. 7. The convergence
is again better described by an exponential function
(In4=0.3 and B=2.9 in Eq. 1, correlation coeffi-
cient =0.9990; In 4 =-2.1 and B = 6.2, correlation
coefficient = 0.9996 in Eq. 2) than by an inverse power
form (In 4 =12.6 and B =10.6, correlation coeffi-
cient = 0.988).

4 Conclusion

For the H,, Hj and Li, systems the convergence
behavior as a function of s functions only is markedly
better described by an exponential dependence (correla-
tion coefficients = 0.994-0.998) than by a power form
(correlation coefficients = 0.956-0.978). The s functions
primarily describe the atomic structure within the
molecule, and the convergence is clearly best described
by an exponential function, in agreement with the
findings for the hydrogen atom [11, 12]. Higher angular
momentum functions describe charge polarization,

. B In(E-Ee) vs. L -1
= O In(E-Ec) vs. In(L) |
— —- In(E-E<>) vs. sqri(L+1)

| | 1 1 ! |
1 2 3 4 5 6

Maximum angular momentum functions = L

Fig. 7. Convergence of the Hartree—Fock energy for N, as a
function of the highest angular momentum functions

which is a purely molecular effect. The preference for
exponential versus power convergence as a function of
angular momentum is less pronounced, i.e. correlation
coeflicients of 0.997-0.999 versus 0.984-0.992; however,
an exponential form depending on the square root of
(L + 1) improves the fit, with correlation coefficients of
0.998-0.999.

The total polarization energies are 5, 10, 19 and 83
millihartree for H,, Li>, Hf and N,, respectively. The
large majority (96-99%) of this can be recovered by the
first set of polarization functions (p or d functions).
Basis sets including angular momentum functions two
higher than necessary for describing the atoms are ca-
pable of providing results which reduce the HF error
below 1 kcal/mol, which in the majority of cases will be
of sufficient accuracy.
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